2021
130) Illmann, N., Gibilisco, R. G., Bejan, I. G., Patroescu-Klotz, I., and Wiesen, P.: Atmospheric oxidation of α,β-unsaturated ketones: kinetics and mechanism of the OH radical reaction, Atmos. Chem. Phys., 21, 13667-13686, 10.5194/acp-21-13667-2021, 2021.
129) Wang, Y., Voliotis, A., Shao, Y., Zong, T., Meng, X., Du, M., Hu, D., Chen, Y., Wu, Z., Alfarra, M. R., and McFiggans, G.: Phase state of secondary organic aerosol in chamber photo-oxidation of mixed precursors, Atmos. Chem. Phys., 21, 11303-11316, 10.5194/acp-21-11303-2021, 2021.
128) Bejan, I. G., Olariu, R.-I., and Wiesen, P.: Secondary Organic Aerosol Formation from Nitrophenols Photolysis under Atmospheric Conditions, Atmosphere, 11, 1346, 2020. https://doi.org/10.3390/atmos11121346.
127)Roman, C., Roman, T., Arsene, C., Bejan, I.-G., and Olariu, R.-I.: Gas-phase IR cross-sections and single crystal structures data for atmospheric relevant nitrocatechols, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 265, 120379, https://doi.org/10.1016/j.saa.2021.120379, 2022
126)Wu, C., Bell, D. M., Graham, E. L., Haslett, S., Riipinen, I., Baltensperger, U., Bertrand, A., Giannoukos, S., Schoonbaert, J., El Haddad, I., Prevot, A. S. H., Huang, W., and Mohr, C.: Photolytically induced changes in composition and volatility of biogenic secondary organic aerosol from nitrate radical oxidation during night-to-day transition, Atmos. Chem. Phys., 21, 14907-14925, 10.5194/acp-21-14907-2021, 2021.
125)Lee, C. P., Surdu, M., Bell, D. M., Lamkaddam, H., Wang, M., Ataei, F., Hofbauer, V., Lopez, B., Donahue, N. M., Dommen, J., Prevot, A. S. H., Slowik, J. G., Wang, D., Baltensperger, U., and El Haddad, I.: Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization, Atmos. Meas. Tech., 14, 5913-5923, 10.5194/amt-14-5913-2021, 2021.
124)Abis, L., Kalalian, C., Lunardelli, B., Wang, T., Zhang, L., Chen, J., Perrier, S., Loubet, B., Ciuraru, R., and George, C.: Measurement report: Biogenic volatile organic compound emission profiles of rapeseed leaf litter and its secondary organic aerosol formation potential, Atmos. Chem. Phys., 21, 12613-12629, 10.5194/acp-21-12613-2021, 2021.
123)Garnett, J., Halsall, C., Thomas, M., Crabeck, O., France, J., Joerss, H., Ebinghaus, R., Kaiser, J., Leeson, A., and Wynn, P. M.: Investigating the Uptake and Fate of Poly- and Perfluoroalkylated Substances (PFAS) in Sea Ice Using an Experimental Sea Ice Chamber, Environmental Science & Technology, 55, 9601-9608, 10.1021/acs.est.1c01645, 2021.
122)Wu, R., Vereecken, L., Tsiligiannis, E., Kang, S., Albrecht, S. R., Hantschke, L., Zhao, D., Novelli, A., Fuchs, H., Tillmann, R., Hohaus, T., Carlsson, P. T. M., Shenolikar, J., Bernard, F., Crowley, J. N., Fry, J. L., Brownwood, B., Thornton, J. A., Brown, S. S., Kiendler-Scharr, A., Wahner, A., Hallquist, M., and Mentel, T. F.: Molecular composition and volatility of multi-generation products formed from isoprene oxidation by nitrate radical, Atmos. Chem. Phys., 21, 10799-10824, 10.5194/acp-21-10799-2021, 2021.
121)Borrás, E., Tortajada-Genaro, L. A., Ródenas, M., Vera, T., Speak, T., Seakins, P., Shaw, M. D., Lewis, A. C., and Muñoz, A.: On-line solid phase microextraction derivatization for the sensitive determination of multi-oxygenated volatile compounds in air, Atmos. Meas. Tech., 14, 4989-4999, 10.5194/amt-14-4989-2021, 2021.
120)Ye, C., Chen, H., Hoffmann, E. H., Mettke, P., Tilgner, A., He, L., Mutzel, A., Brüggemann, M., Poulain, L., Schaefer, T., Heinold, B., Ma, Z., Liu, P., Xue, C., Zhao, X., Zhang, C., Zhang, F., Sun, H., Li, Q., Wang, L., Yang, X., Wang, J., Liu, C., Xing, C., Mu, Y., Chen, J., and Herrmann, H.: Particle-Phase Photoreactions of HULIS and TMIs Establish a Strong Source of H2O2 and Particulate Sulfate in the Winter North China Plain, Environmental Science & Technology, 55, 7818-7830, 10.1021/acs.est.1c00561, 2021.
119)Danelli, S. G., Brunoldi, M., Massabò, D., Parodi, F., Vernocchi, V., and Prati, P.: Comparative characterization of the performance of bio-aerosol nebulizers in connection with atmospheric simulation chambers, Atmos. Meas. Tech., 14, 4461-4470, 10.5194/amt-14-4461-2021, 2021.
118)Illmann, J. N., Patroescu-Klotz, I., and Wiesen, P.: Gas-phase reactivity of acyclic α,β-unsaturated carbonyls towards ozone, Physical Chemistry Chemical Physics, 23, 3455-3466, 10.1039/d0cp05881e, 2021.
117)O'Meara, S. P., Xu, S., Topping, D., Alfarra, M. R., Capes, G., Lowe, D., Shao, Y., and McFiggans, G.: PyCHAM (v2.1.1): a Python box model for simulating aerosol chambers, Geosci. Model Dev., 14, 675-702, 10.5194/gmd-14-675-2021, 2021.
116)Lamkaddam, H., Dommen, J., Ranjithkumar, A., Gordon, H., Wehrle, G., Krechmer, J., Majluf, F., Salionov, D., Schmale, J., Bjelić, S., Carslaw, K. S., El Haddad, I., and Baltensperger, U.: Large contribution to secondary organic aerosol from isoprene cloud chemistry, Science Advances, 7, eabe2952, 10.1126/sciadv.abe2952, 2021.
115) Brüggemann, M., Riva, M., Perrier, S., Poulain, L., George, C., and Herrmann, H.: Overestimation of Monoterpene Organosulfate Abundance in Aerosol Particles by Sampling in the Presence of SO2, Environmental Science & Technology Letters, 8, 206-211, 10.1021/acs.estlett.0c00814, 2021.
114)Tovar, C. M., Haack, A., Barnes, I., Bejan, I. G., and Wiesen, P.: Experimental and theoretical study of the reactivity of a series of epoxides with chlorine atoms at 298 K, Physical Chemistry Chemical Physics, 23, 5176-5186, https://doi.org/10.1039/D0CP06033J, 2021.
113)Jiang, J., El Haddad, I., Aksoyoglu, S., Stefenelli, G., Bertrand, A., Marchand, N., Canonaco, F., Petit, J. E., Favez, O., Gilardoni, S., Baltensperger, U., and Prévôt, A. S. H.: Influence of biomass burning vapor wall loss correction on modeling organic aerosols in Europe by CAMx v6.50, Geosci. Model Dev., 14, 1681-1697, 10.5194/gmd-14-1681-2021, 2021.
112)Vereecken, L., Carlsson, P. T. M., Novelli, A., Bernard, F., Brown, S. S., Cho, C., Crowley, J. N., Fuchs, H., Mellouki, W., Reimer, D., Shenolikar, J., Tillmann, R., Zhou, L., Kiendler-Scharr, A., and Wahner, A.: Theoretical and experimental study of peroxy and alkoxy radicals in the NO3-initiated oxidation of isoprene, Physical Chemistry Chemical Physics, 23, 5496-5515, 10.1039/d0cp06267g, 2021
111)Campbell, S. J., Wolfer, K., Utinger, B., Westwood, J., Zhang, Z. H., Bukowiecki, N., Steimer, S. S., Vu, T. V., Xu, J., Straw, N., Thomson, S., Elzein, A., Sun, Y., Liu, D., Li, L., Fu, P., Lewis, A. C., Harrison, R. M., Bloss, W. J., Loh, M., Miller, M. R., Shi, Z., and Kalberer, M.: Atmospheric conditions and composition that influence PM2.5 oxidative potential in Beijing, China, Atmos. Chem. Phys., 21, 5549-5573, 10.5194/acp-21-5549-2021, 2021
110)Pill, D., Wiesen, P., and Kleffmann, J.: Temperature dependencies of the degradation of NO, NO2 and HONO on a photocatalytic dispersion paint, Physical Chemistry Chemical Physics, 23, 9418-9427, 10.1039/d1cp01157j, 2021
109) Tomas, A., Aslan, L., Muñoz, A., Ródenas, M., Vera, T., Borrás, E., Coddeville, P., and Fittschen, C.: Photolysis of multifunctional carbonyl compounds under natural irradiation at EUPHORE, Atmospheric Environment, 253, 118352, https://doi.org/10.1016/j.atmosenv.2021.118352, 2021.
108) Grira, A., Kalalian, C., Illmann, J. N., Patroescu-Klotz, I., El Dib, G., Coddeville, P., Canosa, A., Coeur, C., Wiesen, P., Roth, E., Chakir, A., and Tomas, A.: Gas-phase ozonolysis of trans-2-hexenal: Kinetics, products, mechanism and SOA formation, Atmospheric Environment, 253, 118344, https://doi.org/10.1016/j.atmosenv.2021.118344, 2021.
107)Thomas, M., Laube, J. C., Kaiser, J., Allin, S., Martinerie, P., Mulvaney, R., Ridley, A., Röckmann, T., Sturges, W. T., and Witrant, E.: Stratospheric carbon isotope fractionation and tropospheric histories of CFC-11, CFC-12, and CFC-113 isotopologues, Atmos. Chem. Phys., 21, 6857-6873, 10.5194/acp-21-6857-2021, 2021.
106)Mutzel, A., Zhang, Y., Böge, O., Rodigast, M., Kolodziejczyk, A., Wang, X., and Herrmann, H.: Importance of secondary organic aerosol formation of α-pinene, limonene, and m-cresol comparing day- and nighttime radical chemistry, Atmos. Chem. Phys., 21, 8479-8498, 10.5194/acp-21-8479-2021, 2021.
105) Ren, Y., El Baramoussi, E. M., Daële, V., and Mellouki, A.: Atmospheric chemistry of ketones: Reaction of OH radicals with 2-methyl-3-pentanone, 3-methyl-2-pentanone and 4-methyl-2-pentanone, Science of The Total Environment, 780, 146249, https://doi.org/10.1016/j.scitotenv.2021.146249, 2021.
104)Kroflič, A., Anders, J., Drventić, I., Mettke, P., Böge, O., Mutzel, A., Kleffmann, J., and Herrmann, H.: Guaiacol Nitration in a Simulated Atmospheric Aerosol with an Emphasis on Atmospheric Nitrophenol Formation Mechanisms, ACS Earth and Space Chemistry, 5, 1083-1093, 10.1021/acsearthspacechem.1c00014, 2021.
103) El Othmani, H., Ren, Y., Bedjanian, Y., El Hajjaji, S., Tovar, C., Wiesen, P., Mellouki, A., McGillen, M. R., and Daële, V.: Gas-Phase Rate Coefficient of OH + 1,2-Epoxybutane Determined between 220 and 950 K, ACS Earth and Space Chemistry, 5, 960-968, 10.1021/acsearthspacechem.1c00050, 2021.
102)Pospisilova, V., Bell, D. M., Lamkaddam, H., Bertrand, A., Wang, L., Bhattu, D., Zhou, X., Dommen, J., Prevot, A. S. H., Baltensperger, U., El Haddad, I., and Slowik, J. G.: Photodegradation of α-Pinene Secondary Organic Aerosol Dominated by Moderately Oxidized Molecules, Environmental Science & Technology, 55, 6936-6943, 10.1021/acs.est.0c06752, 2021.
101)Thomas, M., France, J., Crabeck, O., Hall, B., Hof, V., Notz, D., Rampai, T., Riemenschneider, L., Tooth, O. J., Tranter, M., and Kaiser, J.: The Roland von Glasow Air-Sea-Ice Chamber (RvG-ASIC): an experimental facility for studying ocean–sea-ice–atmosphere interactions, Atmos. Meas. Tech., 14, 1833-1849, 10.5194/amt-14-1833-2021, 2021.
100)Brownwood, B., Turdziladze, A., Hohaus, T., Wu, R., Mentel, T. F., Carlsson, P. T. M., Tsiligiannis, E., Hallquist, M., Andres, S., Hantschke, L., Reimer, D., Rohrer, F., Tillmann, R., Winter, B., Liebmann, J., Brown, S. S., Kiendler-Scharr, A., Novelli, A., Fuchs, H., and Fry, J. L.: Gas-Particle Partitioning and SOA Yields of Organonitrate Products from NO3-Initiated Oxidation of Isoprene under Varied Chemical Regimes, ACS Earth and Space Chemistry, 10.1021/acsearthspacechem.0c00311, 2021.
99)Vereecken, L., Carlsson, P. T. M., Novelli, A., Bernard, F., Brown, S. S., Cho, C., Crowley, J. N., Fuchs, H., Mellouki, W., Reimer, D., Shenolikar, J., Tillmann, R., Zhou, L., Kiendler-Scharr, A., and Wahner, A.: Theoretical and experimental study of peroxy and alkoxy radicals in the NO3-initiated oxidation of isoprene, Physical Chemistry Chemical Physics, 23, 5496-5515, 10.1039/d0cp06267g, 2021.
98) A. Baptista, R. G. Gibilisco, P. Wiesen, M. A. Teruel, FTIR kinetic study of the reactions of γ-caprolactone and γ-heptalactone initiated by Cl and OH radicals at 298 K and atmospheric pressure, Chemical Physics Letters, Volume 765, 2021, 138313, ISSN 0009-2614, https://doi.org/10.1016/j.cplett.2020.138313.
97)Brüggemann, M., Hayeck, N. & George, C. Author Correction: Interfacial photochemistry at the ocean surface is a global source of organic vapors and aerosols. Nat Commun 9, 3222 (2018). https://doi.org/10.1038/s41467-018-05687-3
96) S. Chandran, S. Dixneuf, J. Orphal, A.A. Ruth, Experimental observation of the ν2+4ν3 bands of HD16O and HD18O between 14975 and 15275 cm−1, Journal of Molecular Spectroscopy, Volume 375, 2021, 111395, ISSN 0022-2852. https://doi.org/10.1016/j.jms.2020.111395.
2020
95)Cassagnes, L. E., Leni, Z., Håland, A., Bell, D. M., Zhu, L., Bertrand, A., Baltensperger, U., El Haddad, I., Wisthaler, A., Geiser, M., and Dommen, J.: Online monitoring of volatile organic compounds emitted from human bronchial epithelial cells as markers for oxidative stress, Journal of Breath Research, 15, 016015, 10.1088/1752-7163/abc055, 2020
94) Role of Relative Humidity in the Secondary Organic Aerosol Formation from High-NOx Photooxidation of Long-Chain Alkanes: n-Dodecane Case Study. H. Lamkaddam, A. Gratien, E. Pangui, M. David, F. Peinado, J.-M. Polienor, M. Jerome, M. Cazaunau, C. Gaimoz, B. Picquet-Varrault, I. Kourtchev, M. Kalberer, and J.-F. Doussin. ACS Earth Space Chem. 2020, 4, 12, 2414–2425. https://doi/10.1021/acsearthspacechem.0c00265
93)Secondary Organic Aerosol Formation from Nitrophenols Photolysis under Atmospheric Conditions. I. G. Bejan, R.-I. Olariu and P. Wiesen. Atmosphere 2020, 11, 1346. https://doi.org/10.3390/atmos11121346
92)A comparative and experimental study of the reactivity with nitrate radical of two terpenes: α-terpinene and γ –terpinene. A. Fouqueau, M. Cirtog, M. Cazaunau, E. Pangui, J.-F. Doussin, and B. Picquet-Varrault. Atmos. Chem. Phys., 20, 15167–15189, 2020. https://doi.org/10.5194/acp-20-15167-2020.
91)Implementation of an incoherent broadband cavity-enhanced absorption spectroscopy technique in an atmospheric simulation chamber for in situ NO3 monitoring: characterization and validation for kinetic studies. A. Fouqueau, M. Cirtog, M. Cazaunau, E. Pangui, P. Zapf, G. Siour, X. Landsheere, G. Méjean, D. Romanini, and B. Picquet-Varrault. Atmos. Meas. Tech., 13, 6311–6323, 2020. https://doi.org/10.5194/amt-13-6311-2020.
90)Direct contribution of ammonia to α-pinene secondary organic aerosol formation. Liqing Hao, Eetu Kari, Ari Leskinen, Douglas R. Worsnop, and Annele Virtanen. Atmos. Chem. Phys., 20, 14393–14405, 2020. https://doi.org/10.5194/acp-20-14393-2020.
89)Distinct chemical and mineralogical composition of Icelandic dust compared to northern African and Asian dust. C. Baldo, P. Formenti, S. Nowak, S. Chevaillier, M. Cazaunau, E. Pangui, C. Di Biagio, J-F. Doussin, K. Ignaty. Atmos. Chem. Phys., 20, 13521–13539, 2020. https://doi.org/10.5194/acp-20-13521-2020.
88)Interference from alkenes in chemiluminescent NOx measurements. M. S. Alam, L. R. Crilley, J. D. Lee, L. J. Kramer, C. Pfrang, M. Vázquez-Moreno, M. Ródenas, A. Muñoz, and W. J. Bloss. Atmos. Meas. Tech., 13, 5977–5991, 2020. https://doi.org/10.5194/amt-13-5977-2020.
87)Estimation of rate coefficients for the reactions of O3 with unsaturated organic compounds for use in automated mechanism construction. M. E. Jenkin, R. Valorso, B. Aumont, M. J. Newland, and A. R. Rickard. Atmos. Chem. Phys., 20, 12921–12937, 2020. https://doi.org/10.5194/acp-20-12921-2020
86)Y. Ren, M. Mcgillen, V. Daële, J. Casas, A. Mellouki. The fate of methyl salicylate in the environment and its role as signal in multitrophic interactions. Science of the Total Environment, Elsevier, In press, 10.1016/j.scitotenv.2020.141406.
85)Photooxidation of pinonaldehyde at ambient conditions investigated in the atmospheric simulation chamber SAPHIR. M. Rolletter, Marion Blocquet, Martin Kaminski, Birger Bohn, Hans-Peter Dorn, Andreas Hofzumahaus, Frank Holland, Xin Li, Franz Rohrer, Ralf Tillmann, Robert Wegener, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs. Atmos. Chem. Phys., 20, 13701–13719, 2020. https://doi.org/10.5194/acp-20-13701-2020
84)Influence of Arctic Microlayers and Algal Cultures on SeaSpray Hygroscopicity and the Possible Implications forMixed-Phase Clouds. Christiansen, S., Ickes, L.,Bulatovic, I., Leck, C., Murray, B. J.,Bertram, A. K., et al. (2020). Journal of Geophysical Research:Atmospheres, 125, e2020JD032808. https://doi.org/10.1029/2020JD032808
83)Evolution of NO3 reactivity during the oxidation of isoprene. P. Dewald, J. M. Liebmann, N. Friedrich, J. Shenolikar, J. Schuladen, F. Rohrer, D. Reimer, R. Tillmann, A. Novelli, C. Cho, K. Xu, R. Holzinger, F. Bernard, Li Zhou, W. Mellouki, S. S. Brown, H. Fuchs, J. Lelieveld, and J. N. Crowley. Atmos. Chem. Phys., 20, 10459–10475, 2020. https://doi.org/10.5194/acp-20-10459-2020
82)Treatment of non-ideality in the SPACCIM multiphase model – Part 2: Impacts on the multiphase chemical processing in deliquesced aerosol particles. A. Jhony Rusumdar, A. Tilgner, R. Wolke, and H. Herrmann. Atmos. Chem. Phys., 20, 10351–10377, 2020. https://doi.org/10.5194/acp-20-10351-2020.
81)Glyoxal’s impact on dry ammonium salts: fast and reversible surface aerosol browning. David O. De Haan, Lelia N. Hawkins, Kevin Jansen, Hannah G. Welsh, Raunak Pednekar, Alexia de Loera, Natalie G. Jimenez, Margaret A. Tolbert, Mathieu Cazaunau, Aline Gratien, Antonin Bergé, Edouard Pangui, Paola Formenti, and Jean-François Doussin. Atmos. Chem. Phys., 20, 9581–9590, 2020. https://doi.org/10.5194/acp-20-9581-2020
80)Atmospheric fate of two relevant unsaturated ketoethers: kinetics, products and mechanisms for the reaction of hydroxyl radicals with (E)-4-methoxy-3-buten-2-one and (1E)-1-methoxy-2-methyl-1-penten-3-one. Rodrigo Gastón Gibilisco, Ian Barnes, Iustinian Gabriel Bejan, and Peter Wiesen. Atmos. Chem. Phys., 20, 8939–8951, 2020. https://doi.org/10.5194/acp-20-8939-2020.
79)Conformer-Specific Photolysis of Pyruvic Acid and the Effect of Water. Blair, Sandra L.; Harris, Allison E. Reed; Frandsen, Benjamin N.; Kjaergaard, Henrik G.; Pangui, Edouard; et al. s: J. Phys. Chem. A 2020, 124, 1240−1252. https://www.researchgate.net/publication/338808850_Conformer_Specific_Photolysis_of_Pyruvic_Acid_and_the_Effect_of_Water
78)Production of particulate brown carbon during atmospheric aging of residential wood-burning emissions. Nivedita K. Kumar, Joel C. Corbin, Emily A. Bruns, Dario Massabó, Jay G. Slowik, Luka Drinovec, Griša Mocnik, Paolo Prati, Athanasia Vlachou, Urs Baltensperger, Martin Gysel, Imad El-Haddad, and André S. H. Prévôt. Atmos. Chem. Phys., 18, 17843–17861, 2018. https://doi.org/10.5194/acp-18-17843-2018
77) Aromatic Photo-oxidation, A New Source of Atmospheric Acidity. Sainan Wang, Mike J. Newland, Wei Deng, Andrew R. Rickard, Jacqueline F. Hamilton, Amalia Muñoz, Milagros Ródenas, Monica M. Vázquez, Liming Wang, and Xinming Wang. Environmental Science & Technology 2020 54 (13), 7798-7806. DOI: 10.1021/acs.est.0c00526
76)Kinetic and product studies of the reactions of NO3 with a series of unsaturated organic compounds. Yangang Ren, Max Mcgillen, Ibrahim Ouchen, Véronique Daële, Abdelwahid Mellouki. Journal of Environmental Sciences, Elsevier, 2020, 95, pp.111-120. https://doi.org/10.1016/j.jes.2020.03.022
75)Comparison of dimension reduction techniques in the analysis of mass spectrometry data. Sini Isokääntä, Eetu Kari, Angela Buchholz, Liqing Hao, Siegfried Schobesberger , Annele Virtanen, Santtu Mikkonen. Atmos. Meas. Tech., 13, 2995–3022, 2020 10.5194/amt-13-2995-2020.
74)CAPRAM reduction towards an operational multiphase halogen and DMS chemistry treatment in the chemistry transport model COSMOMUSCAT (5.04e). Erik H. Hoffmann, Roland Schrödner, Andreas Tilgner, Ralf Wolke, Hartmut Herrmann. Geosci. Model Dev., 13, 2587–2609, 2020. https://doi.org/10.5194/gmd-13-2587-2020.
73)Trends in stabilisation of Criegee intermediates from alkene ozonolysis. Mike J. Newland, Beth S. Nelson, Amalia Munoz, Milagros Rodenas, Teresa Vera, Joan Tarregab and Andrew R. Rickard. : Phys. Chem. Chem. Phys., 2020, 22, 13698. DOI: 10.1039/d0cp00897d
72)Database for the kinetics of the gas-phase atmospheric reactions of organic compounds. Max R. McGillen, William P. L. Carter, Abdelwahid Mellouki, John J. Orlando, Bénédicte Picquet-Varrault, and Timothy J. Wallington. Earth Syst. Sci. Data, 12, 1203–1216, 2020. https://doi.org/10.5194/essd-12-1203-2020
71)An intercomparison of CH3O2 measurements by fluorescence assay by gas expansion and cavity ring-down spectroscopy within HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry). Lavinia Onel, Alexander Brennan, Michele Gianella, James Hooper, Nicole Ng, Gus Hancock, Lisa Whalley, Paul W. Seakins, Grant A. D. Ritchie, and Dwayne E. Heard. Atmos. Meas. Tech., 13, 2441–2456, 2020 https://doi.org/10.5194/amt-13-2441-2020
70)Characterization and first results from LACIS-T: a moist-air wind tunnel to study aerosol–cloud–turbulence interactions. Dennis Niedermeier, Jens Voigtländer, Silvio Schmalfuß, Daniel Busch, Jörg Schumacher, Raymond A. Shaw, and Frank Stratmann. Atmos. Meas. Tech., 13, 2015–2033, 2020 https://doi.org/10.5194/amt-13-2015-2020.
69) Organosulfates in Ambient Aerosol: State of Knowledge and Future Research Directions on Formation, Abundance, Fate, and Importance. Martin Brüggemann, Rongshuang Xu, Andreas Tilgner, Kai Chung Kwong, Anke Mutzel, Hon Yin Poon, Tobias Otto, Thomas Schaefer, Laurent Poulain, Man Nin Chan, Hartmut Herrmann. Environmental Science & Technology 2020 54 (7), 3767-3782. DOI: 10.1021/acs.est.9b06751
68)Direct Radiative Effect by Mineral Dust Aerosols Constrained by New Microphysical and Spectral Optical Data. Claudia Di Biagio, Y. Balkanski, S. Albani, O. Boucher, P. Formenti. Geophysical Research Letters, American Geophysical Union, 2020, 47 (2), ff10.1029/2019GL086186ff. ffhal-02505450f.
67)Potential dual effect of anthropogenic emissions on the formation of biogenic secondary organic aerosol (BSOA). Eetu Kari, Liqing Hao, Arttu Ylisirniö, Angela Buchholz, Ari Leskinen, Pasi Yli-Pirilä, Ilpo Nuutinen, Kari Kuuspalo, Jorma Jokiniemi, Celia L. Faiola, Siegfried Schobesberger, and Annele Virtanen. Atmos. Chem. Phys., 19, 15651–15671, 2019 https://doi.org/10.5194/acp-19-15651-2019.
66)Predominance of secondary organic aerosol to particle-bound reactive oxygen species activity in fine ambient aerosol. Jun Zhou, Miriam Elser, Ru-Jin Huang, Manuel Krapf, Roman Fröhlich, Deepika Bhattu, Giulia Stefenelli, Peter Zotter, Emily A. Bruns, Simone M. Pieber, Haiyan Ni, Qiyuan Wang, Yichen Wang, Yaqing Zhou, Chunying Chen, Mao Xiao, Jay G. Slowik, Samuel Brown, Laure-Estelle Cassagnes, Kaspar R. Daellenbach, Thomas Nussbaumer, Marianne Geiser, André S. H. Prévôt, Imad El-Haddad, Junji Cao, Urs Baltensperger, and Josef Dommen. Atmos. Chem. Phys., 19, 14703–14720, 2019
https://doi.org/10.5194/acp-19-14703-2019.
65)Bulk organic aerosol analysis by PTR-MS: an improved methodology for the determination of total organic mass, O:C and H:C ele- mental ratios and the average molecular formula. Joris Leglise, Markus Muller, Felix Piel, Tobias Otto, Armin Wisthaler. Analytical Chemistry, American Chemical Society, 2019, ff10.1021/acs.analchem.9b02949ff. ffhal-02459530.
64)Kinetic Measurements of Cl Atom Reactions with C5–C8 Unsaturated Alcohols. Asma Grira, Cornelia Amarandei, Manolis N. Romanias, Gisèle El Dib, André Canosa, Cecilia Arsene, Iustinian Gabriel Bejan, Romeo Iulian Olariu, Patrice Coddeville and Alexandre Tomas. Atmosphere 2020, 11, 256; doi:10.3390/atmos11030256
63)On the fate of oxygenated organic molecules in atmospheric aerosol particles. V. Pospisilova, F. D. Lopez-Hilfiker, D. M. Bell, I. ElHaddad, C. Mohr, W. Huang, L. Heikkinen, M. Xiao, J. Dommen, A. S. H. Prevot, U. Baltensperger, J. G. Slowik. Science Advances 13 Mar 2020: Vol. 6, no. 11, eaax8922 DOI: 10.1126/sciadv.aax8922
62)Importance of isomerization reactions for OH radical regeneration from the photo-oxidation of isoprene investigated in the atmospheric simulation chamber SAPHIR. Anna Novelli, Luc Vereecken, Birger Bohn1, Hans-Peter Dorn, Georgios I. Gkatzelis, Andreas Hofzumahaus, Frank Holland, David Reimer, Franz Rohrer, Simon Rosanka, Domenico Taraborrelli, Ralf Tillmann, Robert Wegener, Zhujun Yu, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs. Atmos. Chem. Phys., 20, 3333–3355, 2020 https://doi.org/10.5194/acp-20-3333-2020.
61)Tracer Measurements in Growing Sea Ice Support Convective Gravity Drainage Parameterizations. M. Thomas M. Vancoppenolle J. L. France W. T. Sturges D. C. E. Bakker J. Kaiser R. von Glasow. Journal of Geophysical Research: Oceans 125: https://doi.org/10.1029/2019JC015791.
60)Photolysis and oxidation by OH radicals of two carbonyl 2 nitrates: 4-nitrooxy-2-butanone and 5-nitrooxy-2-pentanone. Bénédicte Picquet-Varrault, Ricardo Suarez-Bertoa, Marius Duncianu, Mathieu Cazaunau, Edouard Pangui, Marc David, Jean-François Doussin. Atmospheric Chemistry and Physics Discussions, https://doi.org/10.5194/acp-2019-801.
59)AtChem (version 1), an open-source box model for the Master Chemical Mechanism. Roberto Sommariva, Sam Cox, Chris Martin, Kasia Boronska, Jenny Young, Peter K. Jimack, Michael J. Pilling, Vasileios N. Matthaios, Beth S. Nelson, Mike J. Newland, Marios Panagi, William J. Bloss, Paul S. Monks, and Andrew R. Rickard. Geosci. Model Dev., 13, 169–183, 2020 https://doi.org/10.5194/gmd-13-169-2020
58)Kinetic Study of the Temperature Dependence of the OH Initiated Oxidation of Dimethyl Sulphide. Houssni Lamkaddam, Aline Gratien, Manon Ropion, Edouard Pangui, Jean-François Doussin. 2020. hal-02435165, version 1.
2019
57)Joris Leglise. Etude de la formation d'aérosols organiques secondaires par spectométrie de masse lors de l'ozonolyse de composés organiques volatils insatures. Autre. Université d'Orléans, 2019. Français. ⟨NNT : 2019ORLE3013⟩. ⟨tel-03101668⟩
56)Complex refractive indices and single scattering albedo of global dust 2 aerosols in the shortwave spectrum and relationship to iron content and size. Claudia Di Biagio, Paola Formenti, Yves Balkanski, Lorenzo Caponi, Mathieu Cazaunau, Edouard Pangui, Emilie Journet, Sophie Nowak, Meinrat O. Andreae, Konrad Kandler, Thuraya Saeed, Stuart Piketh, David Seibert, Earle Williams, and Jean-Francois Doussin. Atmos. Chem. Phys., 19, 15503–15531, 2019 https://doi.org/10.5194/acp-19-15503-2019.
55)Atmospheric loss of nitrous oxide (N2O) is not influenced by its potential reactions with OH and NO3 radicals. A. R. Ravishankara, Anne-Laure Pele, Li Zhou, Yangang Ren, Antonia Zogka, Véronique Daële, Mahmoud Idir, Steven S. Brown, Manolis N. Romanias and Abdelwahid Mellouki. Phys. Chem. Chem. Phys. HAL Id : insu-02373036, version 1. doi: 10.1039/C9CP04818A (embargo until 20-5-2020)
54)Size-resolved measurements of PM2.5 water-soluble elements in Iasi, north-eastern Romania: Seasonality, source apportionment and potential implications for human health. Alina Giorgiana Galon-Negru, Romeo Iulian Olariu, Cecilia Arsene. Science of The Total Environment, Elsevier BV, 2019, 10.1016/j.scitotenv.2019.133839.
53)Secondary organic aerosol formation from smoldering and flaming combustion of biomass: a box model parametrization based on volatility basis set. G. Stefenelli, J. Jiang , A. Bertrand, E. A. Bruns, S. M. Pieber, U. Baltensperger, N. Marchand, S. Aksoyoglu, A. S. H. Prévôt, J. G. Slowik, and I. El Haddad. Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1308.
52)Investigation of the α-pinene photooxidation by OH in the atmospheric simulation chamber SAPHIR. Michael Rolletter, Martin Kaminski, Ismail-Hakki Acir, Birger Bohn, Hans-Peter Dorn, Xin Li, Anna Lutz, Sascha Nehr, Franz Rohrer, Ralf Tillmann, Robert Wegener, Andreas Hofzumahaus, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs. Atmos. Chem. Phys., 19, 11635–11649, 2019 https://doi.org/10.5194/acp-19-11635-2019.
51)Atmospheric Fate and Impact of Perfluorinated Butanone and Pentanone. Yangang Ren, François Bernard, Véronique Daële, Abdelwahid Mellouki. Environmental Science & Technology, American Chemical Society, 2019, Accepted Manuscript, 10.1021/acs.est.9b02974. ⟨insu-02262364⟩.
50)Development of a protocol for the auto-generation of explicit aqueousphase oxidation schemes of organic compounds. Peter Bräuer, Camille Mouchel-Vallon, Andreas Tilgner, Anke Mutzel, Olaf Böge, Maria Rodigast, Laurent Poulain, Dominik van Pinxteren, Ralf Wolke, Bernard Aumont, and Hartmut Herrmann. Atmos. Chem. Phys., 19, 9209–9239, 2019 https://doi.org/10.5194/acp-19-9209-2019.
49)Mechanistic Insight into the Uptake and Fate of Persistent Organic Pollutants in Sea Ice. Jack Garnett, Crispin Halsall, Max Thomas, James France, Jan Kaiser, Carola Graf, Amber Leeson, and Peter Wynn. Environ. Sci. Technol. 2019, 53, 6757−6764 (https://pubs.acs.org/doi/pdf/10.1021/acs.est.9b00967).
48)Estimation of rate coefficients and branching ratios for reactions of organic peroxy radicals for use in automated mechanism construction. Michael E. Jenkin, Richard Valorso, Bernard Aumont, and Andrew R. Rickard. Atmos. Chem. Phys., 19, 7691–7717, 2019 https://doi.org/10.5194/acp-19-7691-2019.
47)Mineralogy and mixing state of north African mineral dust by online single-particle mass spectrometry. Nicholas A. Marsden, Romy Ullrich, Ottmar Möhler, Stine Eriksen Hammer, Konrad Kandler, Zhiqiang Cui, Paul I. Williams, Michael J. Flynn, Dantong Liu, James D. Allan, and Hugh Coe. Atmos. Chem. Phys., 19, 2259-2281, 2019 https://doi.org/10.5194/acp-19-2259-2019
46) Atmospheric Photolysis of Methyl Ethyl, Diethyl, and Propyl Ethyl Ketones: Temperature‐Dependent UV Absorption Cross Sections. Jared F. Brewer, Dimitrios K. Papanastasiou, James B. Burkholder, Emily V. Fischer, Yangang Ren, Abdelwahid Mellouki, and A. R. Ravishankara. Journal of Geophysical Research: Atmospheres, 124. https://doi.org/10.1029/2019JD030391.
45)A portable dual-smog-chamber system for atmospheric aerosol field studies. Christos Kaltsonoudis, Spiro D. Jorga, Evangelos Louvaris, Kalliopi Florou, and Spyros N. Pandis. Atmos. Meas. Tech., 12, 2733-2743, 2019, https://doi.org/10.5194/amt-12-2733-2019.
44)Evidence of Freezing Pressure in Sea Ice Discrete Brine Inclusions and Its Impact on Aqueous‐Gaseous Equilibrium. O. Crabeck1, R. J. Galley, L. Mercury, B. Delille, J.‐L. Tison, and S. Rysgaard. Journal of Geophysical Research: Oceans, 124, 1660–1678. https://doi.org/10.1029/2018JC014597
43)Simulation of the chemical evolution of biomass burning organic aerosol. Georgia N. Theodoritsi and Spyros N. Pandis. Atmos. Chem. Phys., 19, 5403-5415, 2019, https://doi.org/10.5194/acp-19-5403-2019
42)Insights into the morphology of multicomponent organic and inorganic aerosols from molecular dynamics simulations. K. S. Karadima, V. G. Mavrantzas, and S. N. Pandis. Atmos. Chem. Phys., 19, 5571–5587, 2019 https://doi.org/10.5194/acp-19-5571-2019. (Joint issue ACP AMT GMD)
41)Effect of Stove Technology and Combustion Conditions on Gas and Particulate Emissions from Residential Biomass Combustion. Deepika Bhattu, Peter Zotter, Jun Zhou, Giulia Stefenelli, Felix Klein, Amelie Bertrand, Brice Temime-Roussel, Nicolas Marchand, Jay G. Slowik, Urs Baltensperger, André Stephan Henry Prévôt, Thomas Nussbaumer, Imad El Haddad, and Josef Dommen. Environ. Sci. Technol., 2019, 53 (4), pp 2209–2219. DOI: 10.1021/acs.est.8b05020.
40)Vancoppenolle, M., Madec, G., Thomas, M., & McDougall, T. J. (2019). Thermodynamics of sea ice phase composition revisited. Journal of Geophysical Research: Oceans, 124, 615–634. https://doi.org/10.1029/2018JC014611
39)Measurements of hydroperoxy radicals (HO2) at atmospheric concentrations using bromide chemical ionisation mass spectrometry. Sascha R. Albrecht, Anna Novelli, Andreas Hofzumahaus, Sungah Kang, Yare Baker, Thomas Mentel, Andreas Wahner, and Hendrik Fuchs. Atmos. Meas. Tech., 12, 891-902, 2019, DOI: 10.5194/amt-12-891-2019.
2018
38) Aqueous Aerosol Processing of Glyoxal and Methylglyoxal: Recent Measurements of Uptake Coefficients, SOA Production, and Brown Carbon Formation. David O. De Haan. Multiphase Environmental Chemistry in the Atmosphere. January 1, 2018,149-167 DOI:10.1021/bk-2018-1299.ch008.
37)Ren, Y., M. Cai, V. Daële and A. Mellouki (2019). Rate coefficients for the reactions of OH radical and ozone with a series of unsaturated esters. Atmospheric Environment, Elsevier, 2019, 200, pp.243-253. DOI: 10.1016/j.atmosenv.2018.12.017.
36)Mike J. Newland, Gerard J. Rea, Lars P. Thüner, Alistair P. Henderson, Bernard T. Golding, Andrew R. Rickard, Ian Barnes, John Wenger. Photochemistry of 2-butenedial and 4-oxo-2-pentenal under atmospheric boundary layer conditions. Royal Society of Chemistry, 2018, DOI: 10.1039/C8CP06437G
35)Ningxin Wang, Spiro D. Jorga, Jeffery R. Pierce, Neil M. Donahue and Spyros N. Pandis. Particle Wall-loss Correction Methods in Smog Chamber Experiments. Atmos. Meas. Tech., 10.5194/amt-11-6577-2018.
34)Dawei Hu, David Topping, and Gordon McFiggans. Measured particle water uptake enhanced by co-condensing vapours. Atmos. Chem. Phys., 18, 14925-14937, 2018, https://doi.org/10.5194/acp-18-14925-2018.
33)Yangang Ren, Jinhe Wang, Benoit Grosselin, Véronique Daële, Abdelwahid Mellouki. Kinetic and product studies of Cl atoms reactions with a series of branched Ketones. Journal of Environmental Sciences, https://doi.org/10.1016/j.jes.2018.03.036.
32)Dario Massabò, Silvia Giulia Danelli, Paolo Brotto, Antonio Comite, Camilla Costa, Andrea Di Cesare, Jean François Doussin, Federico Ferraro, Paola Formenti, Elena Gatta, Laura Negretti, Maddalena Oliva, Franco Parodi, Luigi Vezzulli, and Paolo Prati. ChAMBRe: a new atmospheric simulation Chamber for Aerosol Modelling and Bio-aerosol Research. Atmos. Meas. Tech., 11, 5885–5900, 2018, DOI: 10.5194/amt-11-5885-2018.
31)Elizabeth Gaona-Colman, Maria B. Blanco, Ian Barnes, Peter Wiesen and Mariano A. Teruel. Atmospheric sink of b-ocimene and camphene initiated by Cl atoms: kinetics and products at NOx free-air. RSC Adv., 2018, 8, 27054, doi: 10.1039/c8ra04931a.
30) Arthur T. Zielinski, Peter J. Gallimore, Paul T. Griffiths, Roderic L. Jones, Ashwin A. Seshia, and Markus Kalberer. Measuring Aerosol Phase Changes and Hygroscopicity with a Microresonator Mass Sensor. Analytical Chemistry 2018 90 (16), 9716-9724. DOI: 10.1021/acs.analchem.8b00114.
29)Amalia Muñoz, Esther Borras, Milagros Rodenas, Teresa Vera, and Hans Albert Pedersen. Atmospheric Oxidation of a Thiocarbamate Herbicide Used in Winter Cereals. Environ. Sci. Technol. 2018, 52, 9136−9144. DOI: 10.1021/acs.est.8b02157.
28) Kelly L. Pereira, Rachel Dunmore, James Whitehead, M. Rami Alfarra, James D. Allan, Mohammed S. Alam, Roy M. Harrison, Gordon McFiggans and Jacqueline F. Hamilton. Technical note: Use of an atmospheric simulation chamber to investigate the effect of different engine conditions on unregulated VOC-IVOC diesel exhaust emissions. Atmos. Chem. Phys., 18, 11073–11096, 2018, https://doi.org/10.5194/acp-18-11073-2018
27) Sarah S. Steimer, Aurélie Delvaux, Steven J. Campbell, Peter J. Gallimore, Peter Grice, Duncan J. Howe, Dominik Pitton, Magda Claeys, Thorsten Hoffmann, and Markus Kalberer. Synthesis and characterisation of peroxypinic acids as proxies for highly oxygenated molecules (HOMs) in secondary organic aerosol. Atmos. Chem. Phys., 18, 10973–10983, 2018 https://doi.org/10.5194/acp-18-10973-2018.
26)Martin Brüggemann, Nathalie Hayeck, Christian George, Interfacial photochemistry at the ocean surface is a global source of organic vapors and aerosols, Nature Communications volume 9, Article number: 2101 (2018), DOI: 10.1038/s41467-018-04528-7
25)Nivedita K. Kumar, Joel C. Corbin, Emily A. Bruns, Dario Massabó, Jay G. Slowik, Luka Drinovec, Griša Močnik, Paolo Prati, Athanasia Vlachou, Urs Baltensperger, Martin Gysel, Imad El-Haddad, and André S. H. Prévôt, Production of particulate brown carbon during atmospheric aging of wood-burning emissions, Atmos. Chem. Phys, https://doi.org/10.5194/acp-2018-159.
24)Newland, M. J., Rickard, A. R., Sherwen, T., Evans, M. J., Vereecken, L., Muñoz, A., Ródenas, M., and Bloss, W. J.: The atmospheric impacts of monoterpene ozonolysis on global stabilised Criegee intermediate budgets and SO2 oxidation: experiment, theory and modelling, Atmos. Chem. Phys., 18, 6095-6120, https://doi.org/10.5194/acp-18-6095-2018, 2018.
23)L. Vereecken, B. Aumont, I. Barnes, J.W. Bozzelli, M.J. Goldman, W.H. Green, S. Madronich, M.R. Mcgillen, A. Mellouki, J.J. Orlando, B. Picquet‐Varrault, A.R. Rickard, W.R. Stockwell, T.J. Wallington, W.P.L. Carter, Perspective on Mechanism Development and Structure‐Activity Relationships for Gas‐Phase Atmospheric Chemistry, International Journal of Chemical Kinetics, 2018, doi.org/10.1002/kin.21172.
22) Garcia-Santos, V., E. Valor, C. Di Biagio, V. Caselles, Predictive power of the emissivity angular variation of soils in the thermal infrared (8–14 μm) region by two Mie-based emissivity theoretical models, IEEE Geosci. Rem. Sens. Lett., doi: 10.1109/LGRS.2018.2826446, 2018.
21)A. G. Galon-Negru, R. I. Olariu, and C; Arsene, Chemical characteristics of size-resolved atmospheric aerosols in Iasi, north-eastern Romania: nitrogen-containing inorganic compounds control aerosol chemistry in the area, Atmos. Chem. Phys., 18, 5879–5904, 2018, https://doi.org/10.5194/acp-18-5879-2018.
20)E. L. Simpson, P. J. Connolly, and G. McFiggans; Competition for water vapour results in suppression of ice formation in mixed-phase clouds, Atmos. Chem. Phys., 18, 7237-7250, 2018, doi: 10.5194/acp-18-7237-2018
19)H. Fuchs, S. Albrecht, I.–H. Acir, B. Bohn, M. Breitenlechner, H.-P. Dorn, G. I. Gkatzelis, A. Hofzumahaus, F. Holland, M. Kaminski, F. N. Keutsch, A. Novelli, D. Reimer, F. Rohrer, R. Tillmann, L. Vereecken, R. Wegener, A. Zaytsev, A. Kiendler-Scharr, and A. Wahner. Investigation of the oxidation of methyl vinyl ketone (MVK) by OH radicals in the atmospheric simulation chamber SAPHIR, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-265.
18) David O. De Haan, Natalie G. Jimenez, Alexia de Loera, Mathieu Cazaunau, Aline Gratien, Edouard Pangui, and Jean-François Doussin, Methylglyoxal Uptake Coefficients on Aqueous Aerosol Surfaces, J. Phys. Chem. A 2018, 122, 4854−4860, DOI: 10.1021/acs.jpca.8b00533
17)Jun Zhou, Peter Zotter, Emily A. Bruns, Giulia Stefenelli, Deepika Bhattu, Samuel Brown, Amelie Bertrand, Nicolas Marchand, Houssni Lamkaddam, Jay G. Slowik, André S. H. Prévôt, Urs Baltensperger, Thomas Nussbaumer, Imad El-Haddad, and Josef Dommen. Particle-bound reactive oxygen species (PB-ROS) emissions and formation pathways in residential wood smoke under different combustion and aging conditions, Atmos. Chem. Phys., 18, 6985-7000, 2018 doi: 10.5194/acp-18-6985-2018
16)Yu Wu, Tianhai Cheng, Dantong Liu, James D. Allan, Lijuan Zheng and Hao Chen. Light Absorption Enhancement of Black Carbon Aerosol Constrained by Particle Morphology. Environmental Science & Technology, 2018, doi: 10.1021/acs.est.8b00636.
15)Wiebke Frey, Dawei Hu, James Dorsey, M. Rami Alfarra, Aki Pajunoja, Annele Virtanen, Paul Connolly, and Gordon McFiggans. The efficiency of secondary organic aerosol particles acting as ice-nucleating particles under mixed-phase cloud conditions. Atmos. Chem. Phys., 18, 9393-9409, 2018
https://doi.org/10.5194/acp-18-9393-2018
2017
14)Kinetics of the reactions of NO3 radical with alkanes. Li Zhou, A. R. Ravishankara, Steven S. Brown, Kyle J. Zarzana, Mahmoud Idir, Véronique Daële, Abdelwahid Mellouki. Faraday Discuss., 2017,200, 59-74, doi: 10.1039/C8CP07675H.
13)Atmospheric degradation of VOCs: Isoprene and its ozonolysis products, a perfluoro-ketone and long chain ketones (REN Yangang), PhD thesis at University of Orleans, 2017
12)Atmospheric chemistry of NO3 : reactions with a series of organic and inorganic compounds (Li Zhou), PhD thesis at University of Orléans, 2017
11)Chiara Giorio, Anne Monod, Lola Brégonzio-Rozier, Helen Langley DeWitt, Mathieu Cazaunau, Brice Temime-Roussel, Aline Gratien, Vincent Michoud, Edouard Pangui, Sylvain Ravier, Arthur T. Zielinski, Andrea Tapparo, Reinhilde Vermeylen, Magda Claeys, Didier Voisin, Markus Kalberer, and Jean-François Doussin. Cloud Processing of Secondary Organic Aerosol from Isoprene and Methacrolein Photooxidation. J. Phys. Chem. A, 121 (40), pp 7641–7654, doi: 10.1021/acs.jpca.7b05933, 2017.
10)Ren, Y. G., Grosselin, B., Daele, V., and Mellouki, A.: Investigation of the reaction of ozone with isoprene, methacrolein and methyl vinyl ketone using the HELIOS chamber, Faraday Discuss., 200, 289-311, 10.1039/c7fd00014f, 2017.
9)Di Biagio, C., Formenti, P., Cazaunau, M., Pangui, E., Marchand, N., and Doussin, J. F.: Aethalometer multiple scattering correction Cref for mineral dust aerosols, Atmos. Meas. Tech., 10, 2923-2939, 10.5194/amt-10-2923-2017, 2017.
8)Kangasluoma, J., Hering, S., Picard, D., Lewis, G., Enroth, J., Korhonen, F., Kulmala, M., Sellegri, K., Attoui, M., and Petaja, T. Characterization of three new condensation particle counters for sub-3 nm particle detection during the Helsinki CPC workshop: the ADI versatile water CPC, TSI 3777 nano enhancer and boosted TSI 3010, Atmospheric Measurement Techniques, 10, 2271-2281, 10.5194/amt-10-2271-2017, 2017.
7) Bruggemann, M., Hayeck, N., Bonnineau, C., Pesce, S., Alpert, P. A., Perrier, S., Zuth, C., Hoffmann, T., Chen, J. M., and George, C.: Interfacial photochemistry of biogenic surfactants: a major source of abiotic volatile organic compounds, Faraday Discuss., 200, 59-74, 10.1039/c7fd00022g, 2017.
6)Caponi, L., Formenti, P., Massabo, D., Di Biagio, C., Cazaunau, M., Pangui, E., Chevaillier, S., Landrot, G., Andreae, M. O., Kandler, K., Piketh, S., Saeed, T., Seibert, D., Williams, E., Balkanski, Y., Prati, P., and Doussin, J. F. Spectral- and size-resolved mass absorption efficiency of mineral dust aerosols in the shortwave spectrum: a simulation chamber study, Atmospheric Chemistry and Physics, 17, 7175-7191, 10.5194/acp-17-7175-2017, 2017.
5)Duncianu, M., David, M., Kartigueyane, S., Cirtog, M., Doussin, J. F., and Picquet-Varrault, B. Measurement of alkyl and multifunctional organic nitrates by proton-transfer-reaction mass spectrometry, Atmos. Meas. Tech., 10, 1445-1463, 10.5194/amt-10-1445-2017, 2017.
4)Liu, D., Whitehead, J., Alfarra, M. R., Reyes-Villegas, E., Spracklen, D. V., Reddington, C. L., Kong, S., Williams, P. I., Ting, Y.-C., Haslett, S., Taylor, J. W., Flynn, M. J., Morgan, W. T., McFiggans, G., Coe, H., and Allan, J. D. Black-carbon absorption enhancement in the atmosphere determined by particle mixing state, Nature Geoscience, advance online publication, doi:10.1038/ngeo2901, 2017.
3)Di Biagio C., P. Formenti, Y. Balkanski, L. Caponi, M. Cazaunau, E. Pangui, E. Journet, S. Nowak, S. C., M. O. Andreae, K. Kandler, T. Saeed, S. Piketh, D. Seibert, E. Williams, and J.-F. Doussin. Global scale variability of the mineral dust longwave refractive index: a new dataset of in situ measurements for climate modelling and remote sensing, Atmospheric Chemistry and Physics, 17, 3, pp:1901-1929; 2017. DOI: 10.5194/acp-2016-616
2)Onel L., Brennan A., Gianella M., Ronnie G., Lawry Aguila A., Hancock G., Whalley Lisa, Seakins P.W., Ritchie G. A. D., Heard D. E., An intercomparison of HO2 measurements by fluorescence assay by gas expansion and cavity ring-down spectroscopy within HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry), Atmospheric Chemistry Techniques, https://doi.org/10.5194/amt-10-4877-2017; 2017.
1) Allison E. Reed Harris, Mathieu Cazaunau, Aline Gratien, Edouard Pangui, Jean-François Doussin, and Veronica Vaida. ; Atmospheric Simulation Chamber Studies of the Gas-Phase Photolysis of Pyruvic Acid. The Journal of Physical Chemistry A 2017 121 (44), 8348-8358, DOI: 10.1021/acs.jpca.7b05139